OpenXUP Development Environment Setup

2006-04-20

1. Environment setup

1.1 System requirements

1. Windows 2000 Professional, Windows XP Professional, Windows Server 2000 / 2003

2. IIS (it comes with you Windows setup CD). To install, open Control Panel -> Add/remove Programs -> Add/remove Windows components -> Internet Information Services (IIS)

3. Visual Studio 2005 (with VB.NET and C# options). This will automatically install .NET Framework 2.0 runtime. Note that the .NET Framework must be installed after IIS is installed.

4. Microsoft SOAP SDK 3.0 (for the MSSoapT tracing utility). This is needed if you want to trace and debug XUP SOAP messages.
1.2 Setup steps

The following setup procedure assumes the client and the server will be running on the same development PC.

1. Unpack the release zip file to C:\Inetpub\wwwroot\ (the IIS web server root). You will have the OpenXUP root directory C:\Inetpub\wwwroot\xup.

2. Using Internet Services Manager MMC snap-in, mark the directory xup\srv\xupws as an IIS application.

a. In Window 2000, open Control Panel -> Administrative Tools -> Internet Services Manager. In Windows XP, open Control Panel -> Administrative Tools -> Internet Information Services.

b. Browse to "Default Web Site\xup\srv".

c. Right click on the subfolder "xupws" and select Properties.

d. Select the "Directory" tab.

e. Click the "Create" button to the right of the "Application name" text field.

3. Run xup\client\xup-file-ext.reg (registers the *.xup file extension for internet shortcut) and xup\client\xup-protocol.reg (registers the xup:// protocol scheme).

4. The above steps assume that your OpenXUP root directory is C:\Inetpub\wwwroot\xup. If you choose to install in a different directory, you will need to adjust the registry files appropriately. In addition, you also need to update the Web.config and App.config files in the appropriate projects.
1.3 Running example applications

1.3.1 Standalone XUP Client

If you want to trace SOAP messages, first run MSSoapT, and create a new formatted trace (Ctrl-F). The default proxy port is 8080.

Now, just run C:\Inetpub\wwwroot\xup\client\XUPClient\bin\XUPClient.exe. You will see the following window:

[image: image1.png]
You should remove ":8080" from the Server URL field if you are not running MSSoapT.

The default application is Hello World. There are a few other test applications you can play with.

Note that once the XUP Client is running, you can manage it through its icon in the system tray.

1.3.2 Launching XUP Client from web browsers

If you want to trace SOAP messages, first run MSSoapT, and create a new formatted trace (Ctrl-F). The default proxy port is 8080.

Using IE or Mozilla Firefox, type the following URL in the address bar:

· xup://localhost:8080/xup/srv/xupws/XUPSrv.asmx?app=csharpapp1/bin/csharpapp1:HelloWorldApp
Again, you should remove ":8080" from the URL if you are not running MSSoapT.

This will launch the Hello World example application.
Note that once the XUP Client is running, you can manage it through its icon in the system tray.

2. Source code structure

The root folder 'xup' should live under C:\Inetpub\wwwroot\ (the IIS web server root).

Directory and VS solution description:

· client: contains the VS2005 solution for the XUP PC client

· PocketXUP: contains the VS2005 solution for XUP Pocket PC client

· srv: contains the VS2005 solution for the XUP server toolkit based on ASP.NET Web Services. The subfolder 'srv\xupws' needs to be marked as an IIS application (by using Internet Services Manager MMC snap-in).

· template: contains the VS2005 solution for the SUL template viewer

· shared: contains source code for shared projects (base, message, and sul) between client, srv, and template

Each VS solution contains a list of projects. Some of the projects (or some source files of the projects) are shared among solutions:

· message: XUP protocol message parsing and serialization

· The project is shared by client and srv. However, the client solution contains the project, but doesn't build it; the srv solution builds the project. This is to prevent the DLL version number inconsistency produced by each solution's build process.

· Some of the project source files are linked by the base project of the template solution. This is because the template solution doesn't need most of the files in the message project, so rather than including the entire message project, we just link individual source files.

· base: root abstract classes for all UI languages; includes classes for UI component, event, resource, etc.

· Source files shared among solutions.

· sul: UI components, events, and resources in SUL
· Source files shared among solutions.

Actually, only the 'srv' folder needs to live under C:\Inetpub\wwwroot\. However, since some project source codes are shared among solutions, we put all solutions under a single root so that we can use relative path linking (rather than absolute path) in VS2005 to share source files.

3. Build

· It is not necessary to update the web reference in the client, unless you are modifying the XUP protocol. If you decide to update the web reference in the client, you must make the following modifications to the Reference.vb file after the web reference update:

1. remove "Option strict off"

2. Adds "Imports org.openxup.message"

3. Remove all duplicate classes (auto generated) that collide with the classes in org.openxup.messages

· The XUP server supports both SOAP 1.1 and 1.2 at the same time. It's up to the client to decide which SOAP version to use:

· For SOAP 1.1, edit Reference.vb
· Remove this statement from XUPSrv's constructor
Me.SoapVersion = System.Web.Services.Protocols.SoapProtocolVersion.Soap12

· Change the string from 'XUPSrvSoap12' to 'XUPSrvSoap'

· For SOAP 1.2, edit Reference.vb
· Add this statement (after MyBase.New) to XUPSrv's constructor
Me.SoapVersion = System.Web.Services.Protocols.SoapProtocolVersion.Soap12

· Change the string from 'XUPSrvSoap' to 'XUPSrvSoap12'

· Assembly dependencies:

1. web service (xupws): message, base

2. client: message, base. XUPClient doesn't depend on sul in the source code level; however, sul.dll is loaded dynamically as defined by App.config.

3. template: base, sul

4. XUP applications: message (for ClientInfo), base, sul, xhtml
· Mono compatibility

· Option strict on (in project setting)

· remove Microsoft.VisualBasic imports (in project setting)

